\sim	4	
W	1	

and each stand for a different number.	
= 34	
_ + _ = _ + _ +	
What is the value of ?	
	1 mark

Q2.

A theme park sells tickets online.

Each ticket costs £24

There is a £3 charge for buying tickets.

Which of these shows how to calculate the total cost, in pounds?

	Tick one
number of tickets × 3 + 24	
number of tickets × 24 + 3	
number of tickets + 3 × 24	
number of tickets + 24 × 3	

Q3.

Here is a rule for the time it takes to cook a chicken.

Cooking time = 20 minutes plus an extra
40 minutes for each kilogram

How many minutes will it take to cook a 3 kg chicken?

minutes

1 mark

What is the mass of a chicken that takes 100 minutes to cook?

kg

1 mark

Q4.

Each shape stands for a number.

Work out the value of each shape.

1 mark

Q5.

Maria bakes cakes and sells them in bags.

She uses this formula to work out how much to charge for one bag of cakes.

Cost = number of cakes × 20p + 15p for the bag

How much will a bag of 12 cakes cost?

£

1 mark

Olivia buys a bag of cakes for £5.15

Use the formula to calculate how many cakes are in the bag.

2 marks

Q6.

A shop sells fruit.

Chen buys 2 apples and 3 bananas.

He pays £2.35

Megan buys 2 apples and 1 banana.

She pays £1.25

How much does one banana cost?

2 marks

Q7.

What is the value of 4x + 7 when x = 5?

Q8.

n stands for a number.

$$n + 7 = 13$$

What is the value of n + 10?

1 mark

Q9.

Each shape stands for a number.

Work out the value of each shape.

 $oldsymbol{a}$ and $oldsymbol{b}$ each represent a whole number between 1 and 10

$$2a + b = 8$$

Write the three possible combinations of $m{a}$ and $m{b}$ One is done for you.

when
$$a = \boxed{1}$$

when
$$a =$$

when
$$a =$$

2 marks

Mark schemes

Q1.

17

U1

Q2.

Second box only ticked correctly, as shown:

number of tickets × 3 + 24

number of tickets × 24 + 3

number of tickets + 3 × 24

number of tickets + 24 × 3

Accept alternative unambiguous positive indication of the correct answer, e.g. Y.

[1]

[1]

Q3.

(a) 140

The answer is a time interval

1

(b) 2

[2]

Q4.

(a) $\triangle = 32$

1

1

(b) $\bigcirc = 18$

If the answers to \bigcirc and \triangle are incorrect, award **ONE** mark if $\triangle + \bigcirc = 50$ unless $\bigcirc = 25$

[2]

Q5.

(a) £2.55

1

(b) Award **TWO** marks for the correct answer of 25

If the answer is incorrect, award **ONE** mark for evidence of an appropriate method, e.g:

• £5.15 - 15p = £5 £5 \div 20p

OR

• £5.15 - 15p = £5 5×5

Answer need not be obtained for the award of **ONE** mark.

Commentary: The 2014 national curriculum specifies that pupils should use simple formulae (6A2).

Up to 2

[3]

Q6.

Award **TWO** marks for the correct answer of 55p **OR** £0.55

If the answer is incorrect, award ONE mark for evidence of appropriate working, eg

 \blacksquare £2.35 – £1.25 = £1.10

£1.10 \div 2 = wrong answer

Accept for **ONE** mark £55 **OR** £55p **OR** 0.55p as evidence of appropriate working.

Working must be carried through to reach an answer for the award of **ONE** mark.

Up to 2 U1

[2]

Q7.

27

[1]

Q8.

16

[1]

Q9.

Award **ONE** mark for three correct numbers, as shown.

Q10.

Award **TWO** marks for both correct combinations, as shown.

when
$$a = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

when
$$a = \begin{bmatrix} 3 \\ \end{bmatrix}$$
 $b = \begin{bmatrix} 2 \\ \end{bmatrix}$

OR

when
$$a = \begin{bmatrix} 3 \\ \end{bmatrix}$$
 $b = \begin{bmatrix} 2 \\ \end{bmatrix}$

when
$$a = \begin{bmatrix} 2 \\ \end{bmatrix}$$
 $b = \begin{bmatrix} 4 \\ \end{bmatrix}$

Award **ONE** mark for either combination correct, i.e.

when
$$a = \begin{bmatrix} 2 \\ \end{bmatrix}$$
 $b = \begin{bmatrix} 4 \\ \end{bmatrix}$

OR

when
$$a = \begin{bmatrix} 3 \\ \end{bmatrix}$$
 $b = \begin{bmatrix} 2 \\ \end{bmatrix}$

[2]

[1]